波士顿咨询集团曾发布报告称,到2030年底,仅美国数据中心的用电量预计就将是2022年的三倍,而这一增幅主要来自AI模型训练和更高频的AI查询。
近年来,人工智能带来的能耗问题引发广泛讨论,而我国早在2021年就开始布局“东数西算”,这无疑极具前瞻性,也大大助力了我国在此轮算力竞赛中占得优势。
国际能源署(IEA)在今年1月的一份报告中曾表示,ChatGPT响应一个请求平均耗电2.9瓦时——相当于将一个60瓦的灯泡点亮略少于三分钟。
然而,人工智能模型训练推理这样高时延业务场景,正好是“东数西算”的“舒适区”,“东数西训”成为“东数西算”的典型应用场景。
一项发表于《科学》期刊的研究指出,在2010年至2018年间,全球数据中心的运算量增长了550%,存储空间增长了2400%,但耗电量仅增长6%。
当下人工智能大模型的竞争,颇像一场“算力军备竞赛”。在规模效应(Scaling Law)的驱动下,各公司通过不断增加模型参数和数据量,期待实现“大力出奇迹”,相应地,算力需求也成倍增加。
工信部信息通信经济专家委员会委员刘兴亮也表示,科技大佬预言AI“缺电”,可能是想让大家重视起这个问题,这只说明,AI确实耗电,电力成本也确实很高,但是目前能源问题还没有到影响AI发展的程度。
而在供应方面,电力问题涉及能源、基建、政策、技术等多个方面,难以通过简单的“有”或“没有”“充足”或“不充足”来一言以蔽之。更多样化的能源组合、电力技术革新、国家调控等都将有助于应对这个问题。
他表示,目前AI发展的路线是不断增加模型参数、叠加芯片,如果继续按照这个路线发展,将来消耗的电力将更多,从这个角度来讲,未来AI的能耗问题可能会越来越突出,尤其是对于电力供应本身比较紧张的国家。但就目前而言,能源还没有成为限制AI发展的因素。
以GPT-3的训练为例,GPT-3有1750亿个参数,据估计,训练过程使用了大约1287兆瓦时(也就是128.7万度)的电力。
北京首都在线与甘肃省庆阳市签订人工智能产业合作框架协议;百度智能云与成都高新区签订战略合作签约仪式,打造大模型产业……
当下训练AI大模型使用的主流算力芯片英伟达H100芯片,一张最大功耗为700瓦,这意味着运行一小时就要耗电0.7度。而此前有消息称,OpenAI训练GPT-5,需要数万张H100芯片。
去年,贵州部署智算芯片达8万张,总算力规模增长28.8倍。贵州的目标是,面向东部模型训练,提供低成本、高品质、易使用的算力服务。
盈彩网官方入口他表示,人工智能计算的约束条件是可预测的,“我在一年多前就预测过芯片短缺,下一个短缺的将是电力。我认为明年将没有足够的电力来运行所有的芯片。”
2022年2月,国家发展改革委等部门联合印发通知,同意在内蒙古、贵州、甘肃、宁夏等8地启动建设国家算力枢纽节点,并规划了10个国家数据中心集群。“东数西算”工程正式全面启动。
总而言之,尽管短期内还不会出现AI缺电的问题,但相关的讨论确实给大力发展AI的世界提了个醒——随着AI大模型规模和数量的高速增长,未来可能面临的能源需求激增不容忽视。
但GPT-3的能耗可以作为一个参考,GPT-3模型参数为1750亿,而GPT-4曾被曝包含1.8万亿参数,随着参数的翻倍,能耗也会大幅增加。
北京、贵州、甘肃庆阳等多地纷纷面向企业、高校、科研机构等发放“算力券”,降低使用算力的成本,来支持人工智能产业发展。
AI当然不只ChatGPT,但它的耗能数据可以作为一个切口。可以看出,尽管随着AI算力的迅猛增长,电力需求也持续增长,但目前其在整体电力消耗中所占比例较小。
比如,国际能源署(IEA)对清洁能源能起到的作用就相当乐观,其在一份报告中指出,预计到2026年底,包括可再生能源和核能在内的低碳能源将占全球发电量的46%,并可满足所有额外需求增长,其中就包括用电需求将翻番的人工智能。
而且,数据中心建到青海,不仅能解决电力问题,还能大大降低散热能耗。青海气候干燥、冷凉,数据中心可实现全年314天自然冷却,制冷用电比全国平均水平低40%左右。
我国在电力方面具有优势,已建成全球规模最大的电力供应系统和清洁发电体系,其中,水电、风电、光伏、生物质发电和在建核电规模多年位居世界第一。
因此,引导数据中心向西部资源丰富地区聚集,既能推动西部地区数据中心低碳、绿色、可持续发展,又能满足东部地区的算力需求。
根据公开资料,2023年,美国全口径净发电量为41781.71亿千瓦时(1千瓦时=1度),以ChatGPT每天耗电50万度计算,按一年365天,耗电量约为18250万度,这也只占全美发电量的约0.0044%。
我们当然要看到,客观上,由于网络时延等限制存在,并非所有算力服务场景都适用“东数西算”。比如自动驾驶、证券交易等低时延业务场景就需要就近计算。
GPT-3是在2020年发布的,很多人也许会问,更新的模型能耗如何呢?因为近年来不少AI科技公司不再公布训练细节,比如用了什么硬件、耗时多久,这使得能耗计算变得困难。
让我们做一道简单的数学题,GPT-3训练耗电约128万度,ChatGPT每天为响应需求耗电50万度,GPT-3在训练阶段消耗的电量,甚至无法支撑ChatGPT运行3天。
AI算力需要消耗大量电力,青海的绿电又用不完,如果把数据中心搬到青海,将“绿电”变为“绿算”,将绿色“瓦特”变为绿色“比特”,岂不是双向奔赴?
一方面,数据中心的高效运转离不开大量电力支撑;另一方面,电力系统的平稳高效运行也离不开算力支撑。统筹算力电力协同布局,有助于促进风光绿电消纳和数据中心零碳发展。
另外,据美媒报道,ChatGPT每天响应约2亿个需求,消耗超过50万度电力,相当于1.7万个美国家庭平均一天的用电量。
刘兴亮同意未来可能面临的隐忧,如果继续无节制地扩大参数规模,并且伴随着用户越来越多,而能耗技术没有进步,耗电将很快成为一个问题。但与此同时,他也作出了比较乐观的展望,认为可以通过技术进一步降低能耗。
此外,有运营商已经面向普通消费者推出了“算力卡”。相关业务负责人表示,未来,算力服务也会成为像流量、宽带一样的大众化产品。
国家级人工智能训练场落户贵州贵阳;贵州省与深圳市签订算力协同发展战略合作协议;华为云计算与贵安新区合作打造全球领先的智算中心;华为云盘古、讯飞星火两个基础大模型启动在贵州产业化项目;贵州与浙江联合打造文旅宣传虚拟数字人“杭小忆”……
在人工智能飞速发展的背后,能源消耗问题也日益凸显,成为业内关注的焦点。甚至有人提出,“AI的尽头是算力,而算力的尽头是电力”。
该如何理解这个耗电量?这相当于美国约121个家庭一整年的用电量。也曾有专家打了这么一个比方,大概相当于3000辆特斯拉电动汽车共同开跑,每辆车跑20万英里。
306.31MB
查看531.30MB
查看35.3MB
查看399.13MB
查看882.75MB
查看727.84MB
查看970.23MB
查看867.11MB
查看870.31MB
查看176.61MB
查看919.55MB
查看597.53MB
查看793.26MB
查看661.25MB
查看604.77MB
查看432.46MB
查看689.29MB
查看557.13MB
查看131.46MB
查看883.75MB
查看132.35MB
查看651.62MB
查看441.71MB
查看247.42MB
查看960.97MB
查看318.54MB
查看863.88MB
查看327.47MB
查看607.17MB
查看643.26MB
查看720.66MB
查看298.69MB
查看664.60MB
查看304.69MB
查看425.73MB
查看958.32MB
查看668.59MB
查看678.95MB
查看376.88MB
查看989.70MB
查看105.20MB
查看943.27MB
查看797.69MB
查看389.61MB
查看478.95MB
查看393.23MB
查看825.29MB
查看163.53MB
查看115.35MB
查看435.71MB
查看912.41MB
查看162.66MB
查看573.45MB
查看581.28MB
查看802.24MB
查看961.64MB
查看937.21MB
查看723.26MB
查看397.28MB
查看121.11MB
查看235.99MB
查看250.59MB
查看464.92MB
查看498.13MB
查看906.38MB
查看601.91MB
查看359.12MB
查看876.35MB
查看241.26MB
查看625.63MB
查看327.50MB
查看220.53MB
查看647.49MB
查看871.73MB
查看314.36MB
查看395.86MB
查看442.69MB
查看322.98MB
查看413.20MB
查看426.49MB
查看847.91MB
查看797.45MB
查看124.23MB
查看445.71MB
查看788.22MB
查看939.19MB
查看203.60MB
查看465.10MB
查看368.20MB
查看920.78MB
查看312.55MB
查看839.72MB
查看334.92MB
查看239.28MB
查看594.88MB
查看289.70MB
查看504.50MB
查看842.77MB
查看188.49MB
查看562.62MB
查看576.34MB
查看784.15MB
查看899.79MB
查看656.46MB
查看
281赣州mq
像康德那样思考问题:专访《康德著作全集》主编李秋零🏦
2025-06-19 20:36:19 推荐
202188****4086
2025-06-21 18:20:18 不推荐
615152****2937
2025-06-20 06:45:56 推荐
68卡哇伊跑酷2无敌版
2025-06-21 00:51:34 推荐